资源类型

期刊论文 1013

会议视频 18

年份

2023 48

2022 70

2021 74

2020 75

2019 77

2018 44

2017 45

2016 35

2015 51

2014 60

2013 40

2012 43

2011 45

2010 50

2009 50

2008 35

2007 41

2006 38

2005 23

2004 18

展开 ︾

关键词

能源 7

技术预见 5

有限元 5

仿真 4

有限元法 4

神经网络 4

ANSYS 3

优化设计 3

海上风电场 3

裂缝 3

Inconel 718合金 2

一阶分析法 2

三维有限元 2

上限法 2

产业成熟度 2

参数估计 2

可靠性 2

多目标优化 2

悬索桥 2

展开 ︾

检索范围:

排序: 展示方式:

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 304-315 doi: 10.1007/s11709-013-0213-y

摘要: In the present paper, a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies. The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level, and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level. The link between scales is made using a computational homogenization method. The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element, kinematic conditions, contact constraints, and elimination of overlap satisfied for every particle. The method could be used in a variety of problems that can be represented using granular media.

关键词: homogenization     two-scale     representative volume element     compaction     granular assembly     finite element method    

A novel ensemble model for predicting the performance of a novel vertical slot fishway

Aydin SHISHEGARAN, Mohammad SHOKROLLAHI, Ali MIRNOROLLAHI, Arshia SHISHEGARAN, Mohammadreza MOHAMMAD KHANI

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1418-1444 doi: 10.1007/s11709-020-0664-x

摘要: We investigate the performance of a novel vertical slot fishway by employing finite volume and surrogate models. Multiple linear regression, multiple log equation regression, gene expression programming, and combinations of these models are employed to predict the maximum turbulence, maximum velocity, resting area, and water depth of the middle pool in the fishway. The statistical parameters and error terms, including the coefficient of determination, root mean square error, normalized square error, maximum positive and negative errors, and mean absolute percentage error were employed to evaluate and compare the accuracy of the models. We also conducted a parametric study. The independent variables include the opening between baffles ( ), the ratio of the length of the large and small baffles, the volume flow rate, and the angle of the large baffle. The results show that the key parameters of the maximum turbulence and velocity are the volume flow rate and .

关键词: novel vertical slot fishway     parametric study     finite volume method     ensemble model     gene expression programming    

浅水波方程的二维数值模拟

向波,米晓,纪昌明,罗庆松

《中国工程科学》 2008年 第10卷 第7期   页码 118-124

摘要:

非结构的三角形网格适应于复杂不规则的边界,在此基础上采用有限体积法离散浅水波方程,并结 合有限差分法建立了一种新的离散格式,使得界面通量计算达到二阶精度。为了验证所建立的模型,分别对 二维弯道和二维部分溃坝流动进行了模拟计算,比较了一阶精度和二阶精度的结果,并与其他的方法进行了 比较,得到了较好的结果。

关键词: 圆锥滚子轴承     振动     灰色模糊聚类分析    

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

Applying the spectral stochastic finite element method in multiple-random field RC structures

Abbas YAZDANI

《结构与土木工程前沿(英文)》 2022年 第16卷 第4期   页码 434-447 doi: 10.1007/s11709-022-0820-6

摘要: This paper uses the spectral stochastic finite element method (SSFEM) for analyzing reinforced concrete (RC) beam/slab problems. In doing so, it presents a new framework to study how the correlation length of a random field (RF) with uncertain parameters will affect modeling uncertainties and reliability evaluations. It considers: 1) different correlation lengths for uncertainty parameters, and 2) dead and live loads as well as the elasticity moduli of concrete and steel as a multi-dimensional RF in concrete structures. To show the SSFEM’s efficiency in the study of concrete structures and to evaluate the sensitivity of the correlation length effects in evaluating the reliability, two examples of RC beams and slabs have been investigated. According to the results, the RF correlation length is effective in modeling uncertainties and evaluating reliabilities; the longer the correlation length, the greater the dispersion range of the structure response and the higher the failure probability.

关键词: uncertainty     spectral stochastic finite element method     correlation length     reliability assessment     reinforced concrete beam/slab    

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 24-31 doi: 10.1007/s11709-013-0190-1

摘要: The rigid-body limit equilibrium method cannot reflect the actual stress distribution in a rock mass, and the finite-element-based strength reduction method also has some problems with respect to convergence. To address these problems, a multi-grid method was adopted in this study to establish a structural grid for finite element computation and a slip surface grid for computing slope stability safety factors. This method can be used to determine the stability safety factor for any slip surface or slide block through a combination of nonlinear finite element analysis and limit equilibrium analysis. An ideal elastic–plastic incremental analysis method based on the Drucker–Prager yield criterion was adopted in the nonlinear finite element computation. Elasto-plastic computation achieves good convergence for both small load steps and large load steps and can increase computation precision to a certain extent. To increase the scale and accuracy of the computation, TFINE, a finite element parallel computation program, was used to analyze the influence of grid density on the accuracy of the computation results and was then applied to analysis of the stability of the Jinping high slope. A comparison of the results with results obtained using the rigid-body limit equilibrium method showed that the slope stability safety factors determined using finite element analysis were greater than those obtained using the rigid-body limit equilibrium method and were in better agreement with actual values because nonlinear stress adjustment was considered in the calculation.

关键词: slope     stability     multi-grid method     nonlinear     finite element method    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 107-113 doi: 10.1007/s11709-014-0268-4

摘要: The Green-function-based multiscale stochastic finite element method (MSFEM) has been formulated based on the stochastic variational principle. In this study a fast computing procedure based on the MSFEM is developed to solve random field geotechnical problems with a typical coefficient of variance less than 1. A unique fast computing advantage of the procedure enables computation performed only on those locations of interest, therefore saving a lot of computation. The numerical example on soil settlement shows that the procedure achieves significant computing efficiency compared with Monte Carlo method.

关键词: multiscale     finite element     settlement     perturbation     random field     geotechnical    

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 160-166 doi: 10.1007/s11709-014-0257-7

摘要: Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.

关键词: backward erosion piping     groundwater flow     3D finite element method (FEM)    

Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements

Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 215-221 doi: 10.1007/s11709-017-0401-2

摘要: To facilitate long term infrastructure asset management systems, it is necessary to determine the bearing capacity of pavements. Currently it is common to conduct such measurements in a stationary manner, however the evaluation with stationary loading does not correspond to reality a tendency towards continuous and high speed measurements in recent years can be observed. The computational program SAFEM was developed with the objective of evaluating the dynamic response of asphalt under moving loads and is based on a semi-analytic element method. In this research project SAFEM is compared to commercial finite element software ABAQUS and field measurements to verify the computational accuracy. The computational accuracy of SAFEM was found to be high enough to be viable whilst boasting a computational time far shorter than ABAQUS. Thus, SAFEM appears to be a feasible approach to determine the dynamic response of pavements under dynamic loads and is a useful tool for infrastructure administrations to analyze the pavement bearing capacity.

关键词: semi-analytical finite element method     bearing capacity     asphalt pavements     moving loads     dynamic response    

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 344-354 doi: 10.1007/s11709-011-0124-8

摘要: An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented. The bridge is characterized by a system of post-tensioned and simply supported beams. The dynamic characteristics of the bridge, i.e. natural frequencies, mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm (ERA). Then, these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms (GA) to solve it. From the results of the ambient vibration test of this type of bridge, it is concluded that two-dimensional mode shapes exist: in the longitudinal and transverse; and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating. The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.

关键词: modal analysis     parameter identification     ambient vibration test     Eigensystem Realization Algorithm (ERA) method     finite element method    

A new method of studying collapsibility of loess

Yuanqing ZHU , Zhenghan CHEN ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 305-311 doi: 10.1007/s11709-009-0040-3

摘要: A new triaxial testing system that could control suction in wetting-induced collapsible tests was successfully developed to study the suction effects on wetting-induced collapsible deformation. The pedestal of the triaxial cell was made up of two parts, and the equipment not only could control suction but also could make water accessible to soil. A pressure/volume-controlled equipment was combined with the triaxial system to measure the water volume absorbed by samples accurately and to add pressure on water to filtrate into the sample. The apparatus could measure volume change precisely and keep the deviator stress unvaried, as well as measure the volume of water filtrating into the samples exactly. A triaxial collapsible testing procedure was described using the new apparatus for undisturbed collapsible loess with controlled suction. Furthermore, a series of double triaxial collapsible tests were conducted under different suctions and the same net cell pressure, and tests under different net cell pressures and the same suction were also done. It was indicated that the collapsible deformation increased with the increasing suction, and the effect of the net cell pressure on collapsible deformation was remarkable. The new triaxial apparatus was a useful facility to study the collapsible behavior of loess.

关键词: triaxial apparatus for collapsible soils     controlled suction     pressure/volume controlled equipment     double triaxial collapsible test     single triaxial collapsible test    

Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and boundmethod and MOPSO algorithm

Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING

《能源前沿(英文)》 2020年 第14卷 第3期   页码 649-665 doi: 10.1007/s11708-018-0548-0

摘要: There are various analyses for a solar system with the dish-Stirling technology. One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time. In this study, the convection and radiation heat transfer losses from collector surface, the conduction heat transfer between hot and cold cylinders, and cold side heat exchanger have been considered. During this investigation, four objective functions have been optimized simultaneously, including power, efficiency, entropy, and economic factors. In addition to the four-objective optimization, three-objective, two-objective, and single-objective optimizations have been done on the dish-Stirling model. The algorithm of multi-objective particle swarm optimization (MOPSO) with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations. In the case of multi-objective optimizations with post-expression of preferences, Pareto optimal front are obtained, afterward by implementing the fuzzy, LINMAP, and TOPSIS decision making algorithms, the single optimum results can be achieved. The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.

关键词: dish-Stirling     finite time model     branch and bound algorithm     multi-objective particle swarm optimization (MOPSO)    

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 52-60 doi: 10.1007/s11465-009-0087-9

摘要: In this paper, a three-dimensional finite element modelling of the ribbed strip rolling is carried out, coupling the use of an extremely thin array of elements that is equivalent to the calculation of the additional shear deformation work rate occurred by the velocity discontinuity in the roll bite. The formulation of the finite element modelling by adding a rib inclined contact surface boundary condition is derived, and the performance of the proposed method is conducted. The simulated rib height, forward slip, and the pulling down of rib height have been compared with the measured values and are in good agreement. The equivalent strain rate of the rib was obtained in the simulation. The effect of the rib inclined angle on pulling down of rib height has also been discussed, which is helpful in optimizing the design of the rib inclined angle.

关键词: rib inclined contact boundary condition     ribbed strip     extremely thin elements     pulling down of rib height     finite element modelling    

Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis

Christopher John NASSAU, N. Scott LITOFSKY, Yuyi LIN

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 247-255 doi: 10.1007/s11465-012-0335-2

摘要:

Subsidence, when implant penetration induces failure of the vertebral body, occurs commonly after spinal reconstruction. Anterior lumbar interbody fusion (ALIF) cages may subside into the vertebral body and lead to kyphotic deformity. No previous studies have utilized an artificial neural network (ANN) for the design of a spinal interbody fusion cage. In this study, the neural network was applied after initiation from a Taguchi L18 orthogonal design array. Three-dimensional finite element analysis (FEA) was performed to address the resistance to subsidence based on the design changes of the material and cage contact region, including design of the ridges and size of the graft area. The calculated subsidence is derived from the ANN objective function which is defined as the resulting maximum von Mises stress (VMS) on the surface of a simulated bone body after axial compressive loading. The ANN was found to have minimized the bone surface VMS, thereby optimizing the ALIF cage given the design space. Therefore, the Taguchi-FEA-ANN approach can serve as an effective procedure for designing a spinal fusion cage and improving the biomechanical properties.

关键词: anterior lumbar interbody fusion (ALIF)     artificial neural network (ANN)     finite element     interbody cage     lumbar interbody fusion     subsidence     taguchi method    

标题 作者 时间 类型 操作

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

期刊论文

A novel ensemble model for predicting the performance of a novel vertical slot fishway

Aydin SHISHEGARAN, Mohammad SHOKROLLAHI, Ali MIRNOROLLAHI, Arshia SHISHEGARAN, Mohammadreza MOHAMMAD KHANI

期刊论文

浅水波方程的二维数值模拟

向波,米晓,纪昌明,罗庆松

期刊论文

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

Applying the spectral stochastic finite element method in multiple-random field RC structures

Abbas YAZDANI

期刊论文

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

期刊论文

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

期刊论文

Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements

Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER

期刊论文

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

期刊论文

A new method of studying collapsibility of loess

Yuanqing ZHU , Zhenghan CHEN ,

期刊论文

Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and boundmethod and MOPSO algorithm

Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING

期刊论文

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

期刊论文

Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis

Christopher John NASSAU, N. Scott LITOFSKY, Yuyi LIN

期刊论文